

Pipeline & Specialty Services

Development of a pig based inspection tool utilising MAPS stress measurement technology

David Russell

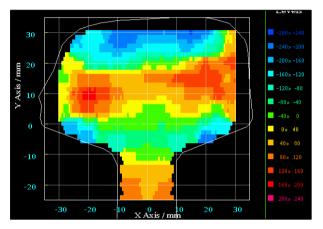
November 2007

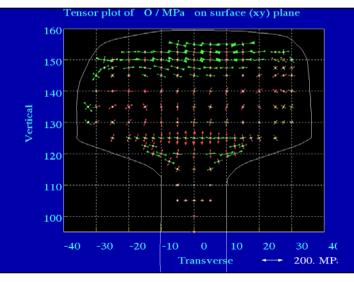
- Weatherford P&SS have developed a technique to determine absolute biaxial stress in pipelines using a magnetic measurement technique
 - Measurement technology licensed from ESR
 Technology (formerly AEA's engineering safety and risk group)

- What is MAPS?
 - Technique for direct measurement of stresses in ferromagnetic material
 - Alternating magnetic field induced in material
 - Amplitude and phase of induced field measured
 - Gives measurements of magnetic parameters
 - Determination of principal axis stress values from these parameters

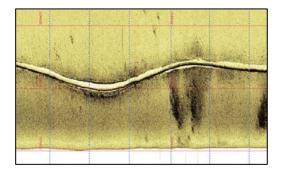
MAPS - In-line Inspection

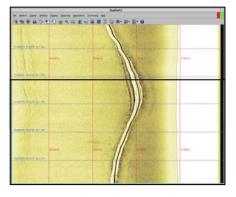
What is it?


- A new type of intelligent pig that measures true stress in the pipeline
- Measurement technique originally developed by the UK Atomic Energy industry for North Sea offshore, also used in automotive and aerospace industries
- Why are we interested?
 - Pipeline operators are keen to know how highly stressed their pipelines are
 - There are no easy ways of doing this currently available

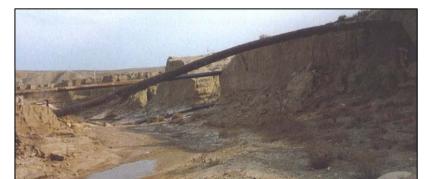


• Other applications - detecting Flaws in railway tracks





- Why measure stress in a pipeline?
 - Pipeline movement can cause major increases in bending stresses
 - Washouts, frost heave, spans, lateral buckles



- Why measure stress in a pipeline?
 - Metal loss (corrosion) results in higher stresses in the pipe wall
 - Cracks, pitting, general metal loss

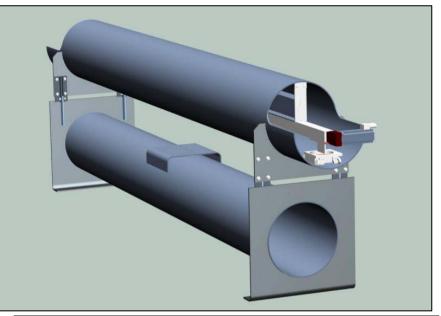
- Mechanical damage (dents etc) increases stress

- Non-contacting probes
- Measurement of average biaxial stress value over area of probe
- Frequency dependent depth of penetration

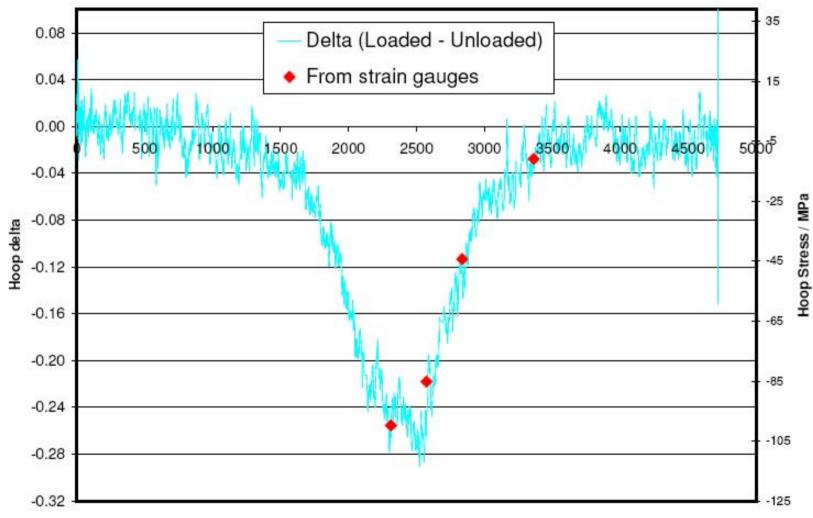
– 0.15 to 7mm

- Accuracy of 10-20 N/mm achievable, down to less than ±1 N/mm under optimum conditions
- Previously Tested for Static Applications
 - Against strain-gauge techniques
 - Against X-ray diffraction

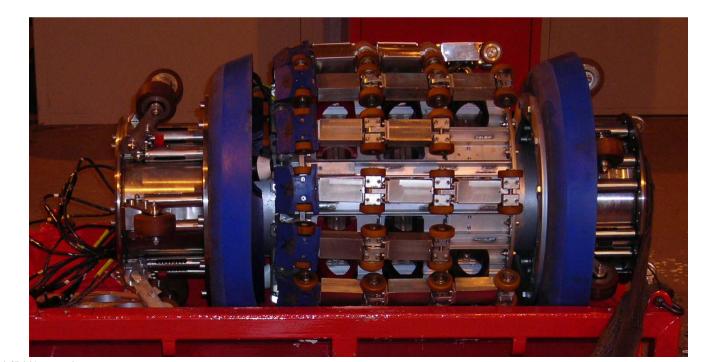
MAPS - Dynamic Measurement


- In-line inspection requires:
 - Ability to correct for magneto-dynamic effects at normal pigging speeds
 - Ability to take readings rapidly enough to provide meaningful axial resolution
 - Three simultaneous measurements to resolve stress components

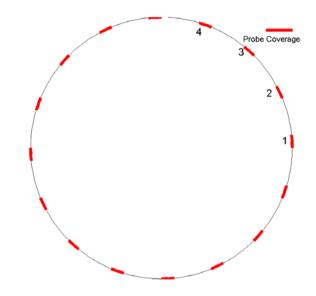
- Test program aimed at demonstrating dynamic capture of MAPS data.
 - Measurement of stress distribution along pipe
 - Detection of applied load
 - Demonstration of repeatability of measurement
 - Characterisation of dynamic effects



- Previous work
 - 6 metre length of 24" pipe
 - Stress the pipe with a hydraulic jack
 - MAPS sensor on trolley
 - Move trolley at speeds up to 4 m/s
 - Compare results with strain gauge measurements


Direct Measurement of Stress

Encoder Position / mm



- Prototype specification
 - 24" diameter
 - Partially populated with sensors, 2-3mm standoff
 - Full specification for environment and range

Prototype Requirements for Field Testing

- 24" prototype pig
- 25% coverage of pipe wall from 16 sets of probes.
- Probe standoff minimal, 1-2mm.
- Suitable to be part of, or used as a commercial tool.

Tool Design Requirements

- Environmental Capability
 - Compatible with upstream oil and gas pipeline products, with normal levels of CO_2 and H_2S
 - Operating Temperature -10°C to 50°C
 - Operating Pressure 200 bar max
 - Operating Range 72 hours

- Pigging Loop
 - 24" X60 pipe
 - 34m test section
 - -0.4 m/s to 1.1 m/s
- Two main aims:
 - Demonstrate piggability
 - Demonstrate stress measurement

- Bending Stress applied by lifting pipe
- Measured by
 - Height of lift
 - External strain-gauging
- Max stress of approximately 40% of yield applied

- Rig modified for pull-through
- Wire-line unit used to pull pig through pressurised line
- Allows imposition of realistic hoop-stresses (up to 30% yield)

- Setup allowed successful testing of the pig
- Mechanical design assessed
 - Robustness
 - Performance
- Measurement System assessed
 - Accuracy
 - Repeatibility

- Detailed assessment of test results
 - Calibration
 - Comparison with external measurements
- Preparation of tool for field trials
 - Mechanical refinements
 - Sensor population